Math 206B Lecture 4 Notes

Daniel Raban

January 14, 2019

1 Characters of S_n

1.1 Induced M^{μ} representations and μ -flags

Last time, we found a character of S_4 , but we didn't quite know what representation it corresponded to. Let's try to understand this a little better.

Definition 1.1. Let $\mu = (\mu_1, \ldots, \mu_k)$ be a partition of *n*. Define

$$M^{\mu} = \operatorname{ind}_{S_{\mu_1} \times \dots \times S_{\mu_k}}^{S_n} 1.$$

Example 1.1. Let $\mu = (n-1,1)$. then $M^{n-1,1} = \operatorname{ind}_{S_{n-1}}^{S_n} 1$. $\dim(M^{n-1,1}) = n$. This is the natural representation.

Definition 1.2. Let $\mu = (\mu_1, \ldots, \mu_k)$ be a partition of n. A μ -flag on [n] is $\emptyset \subseteq A_1 \subseteq A_2 \subseteq \cdots \subseteq [n]$ such that $|A_1| + \mu_1, |A_2| = \mu_1 + \mu_2$, and so on.

Example 1.2. Let $\mu = (n - k, k)$, where $1 \le k \le n/2$. Then μ -flags are in correspondence with (n - k) subsets of $[n]: \emptyset \subseteq A_1 \subseteq [n]$.

Example 1.3. Let $\mu = (1^n)$. μ -flags are in correspondence with S_n , where $\sigma \mapsto A_1 \subseteq \cdots \subseteq A_n$, and $A_i = \{\sigma(1), \sigma(2), \ldots, \sigma(i)\}$.

1.2 Structure of the M^{μ} representations of S_n

Definition 1.3. Let G be a finite group, and let X be a finite set. Let $G \circlearrowright X$. Then there is a **permutation representation** $\varphi : G \to S_X$.

Equivalently, there is a permutation representation $\rho_{\varphi} : G \to \operatorname{GL}(V)$ over \mathbb{C} , where $V = \mathbb{C} \langle x \rangle$.

Proposition 1.1. M^{μ} is a permutation representation of S_n on μ -flags of $[n] = \{1, \ldots, n\}$.

Example 1.4. Let $\mu = (2^2)$. Then M^{μ} is the permutation representation of S_n on 2-subsets of [4]. dim $(M^{2^2}) = \binom{4}{2} = 6$. We claim that $M^{2^2} = S^{(4)} \oplus S^{(3,1)} \oplus S^{(2^2)}$, where these refer to the irreducible representations of S_4 . Let's calculate $\chi_{M^{2^2}}$:

λ	1^{4}	$2 \ 1^2$	2^2	31	4
$\chi_{M^{2^2}}$	6	2	2	0	0
z_{λ}	1	6	3	8	6

Proposition 1.2. Let $\nu = (\nu_1, \nu_2, \dots) = 1^{m_1(\nu)} 2^{m_2(\nu)} \cdots$ be a partition of n, where m_i is the number of is in ν . Then

$$z_{\nu} = \frac{n!}{(m_1! 1^{m_1})(m_2! 2^{m_2}) \cdots}.$$

Theorem 1.1. $M^{\mu} = \bigoplus_{\lambda} m_{\mu,\lambda} S^{\lambda}$, where

$$m_{\mu,\lambda} := \langle M^{\mu}, S^{\lambda} \rangle = \frac{1}{n!} \sum_{\nu} z_{\nu} \chi_{M^{\mu}}[\nu] \chi_{S^{\lambda}}[\nu].$$

Theorem 1.2. The matrix $[m_{\mu,\lambda}]$ has nonnegative integer entries and is upper triangular with 1s on the diagonal, where $\lambda \leq \mu$ is the lexicographic order.